CLINICAL STUDIES
Numerous researchers have investigated the efficacy of beneficial nematodes for biological control of flea and other soil-dwelling pest infestations.
Numerous researchers have investigated the efficacy of beneficial nematodes for biological control of flea and other soil-dwelling pest infestations.
This site uses cookies to improve the user experience. By continuing to browse the site, you are agreeing to our use of cookies.
OKLearn more×We may request cookies to be set on your device. We use cookies to let us know when you visit our websites, how you interact with us, to enrich your user experience, and to customize your relationship with our website.
Click on the different category headings to find out more. You can also change some of your preferences. Note that blocking some types of cookies may impact your experience on our websites and the services we are able to offer.
These cookies are strictly necessary to provide you with services available through our website and to use some of its features.
Because these cookies are strictly necessary to deliver the website, refusing them will have impact how our site functions. You always can block or delete cookies by changing your browser settings and force blocking all cookies on this website. But this will always prompt you to accept/refuse cookies when revisiting our site.
We fully respect if you want to refuse cookies but to avoid asking you again and again kindly allow us to store a cookie for that. You are free to opt out any time or opt in for other cookies to get a better experience. If you refuse cookies we will remove all set cookies in our domain.
We provide you with a list of stored cookies on your computer in our domain so you can check what we stored. Due to security reasons we are not able to show or modify cookies from other domains. You can check these in your browser security settings.
We also use different external services like Google Webfonts, Google Maps, and external Video providers. Since these providers may collect personal data like your IP address we allow you to block them here. Please be aware that this might heavily reduce the functionality and appearance of our site. Changes will take effect once you reload the page.
Google Webfont Settings:
Google Map Settings:
Google reCaptcha Settings:
Vimeo and Youtube video embeds:
You can read about our cookies and privacy settings in detail on our Privacy Policy Page.
PRIVACY
2020 Biological Control paper: High potential for use of microbial agents against cat fleas
Samish M, Rot A, Gindin G, Ment D, Behar A, Glazer I (2020). Biocontrol of the cat flea, Ctenocephalides felis, by entomopathogenic nematodes and fungi. Biological Control, 149:104301. Retrieved from https://www.sciencedirect.com/science/article/abs/pii/S1049964418306479
For further information about this article please contact us.
Abstract
The cat flea, Ctenocephalides felis (Bouche) (Siphonaptera: Pulicidae), is the most important ectoparasite of domestic pets. Its control is mainly based on chemical insecticides. In this study, the potential of fungi and nematodes to control this pest was evaluated. The various life stages of the cat flea were exposed to several variables: strains and species of entomopathogenic nematodes and fungi at different ambient temperatures and levels of relative humidity (RH), as well as in\on filter paper, sand or carpet as substrates. The nematode Steinernema feltiae (Nematoda: Steinernematidae) was most virulent against flea larvae, cocoons and adults, and the nematode Heterorhabditis bacteriophora Poinar (Rhabditida: Heterorhabditidae) was highly effective against flea cocoons on all substrates evaluated. Overall, the nematodes were most effective at 28o C and 95% RH. The fungus Metarhizium robertsii 2575 (Bischoff) (Hypocreales: Clavicipitaceae), was highly virulent against adult fleas. Flea eggs were resistant to both nematodes and the fungus evaluated. The results indicate high potential for use of microbial control agents against cat fleas. While the fungus, M. robertsii, could be effective in killing adult fleas on infested vertebrates, the nematodes S. feltiae and H. bacteriophora could be successful in controlling pre-imaginal stages on the soil.
1982 Journal of Nematology paper: Nematodes shown to be effective on cat fleas
Silverman J, Platzer E G, Rust M K (1982). Infection of the Cat Flea, Ctenocephalides felis (Bouché) by Neoplectana carpocapsae Weiser. Journal of Nematology, Jul;14(3):394-7. Retrieved from https://pubmed.ncbi.nlm. nih.gov/19295728/?
Abstract
Infection of cat flea, Ctenocephalides felis, larvae by the entomophilic nematode Neoaplectana carpocapsae was accomplished in the laboratory. The Breton strain of N. carpocapsae provided higher larval mortality at lower dosages than did the DD-136 strain. Adult nematodes were evident in the insect hemocoel after 48 h; however, no infective third-stage larvae were produced. Larval flea infection increased with an increase in the moisture content of sand from 2% to 7% and of sandy clay from 7% to 12%. Larval flea infection was also obtained on turf containing dauer larvae. Nematode penetration of cocoons with invasion of prepupal and pupal fleas was apparent.
1987 Pennsylvania Dept of Agriculture paper: General biocontrol of pests in agriculture
Hill N S (1987). Biological Control of Insects With Insect-Pathogenic Nematodes – A Brief Status report. Ornamentals Northwest Archives, Spring;10(3):ii-iv. Retrieved from https://agsci.oregonstate.edu/sites/agscid7/files/horticulture/osu-nursery-greenhouse-and-christmas-trees/onn100302.pdf